lnx的平方的不定积分

来源:学生作业帮助网 编辑:作业帮 时间:2021/10/20 02:43:30
lnx的原函数是多少?(lnx求不定积分)

xlnx-x+c分部积分法∫lnxdx=xlnx-∫xdlnx=xlnx-∫dx=xlnx-x+c

(lnx)^2的不定积分

分部积分法S表示积分号S(lnx)^2dx=x(lnx)^2-S2lnxdx=x(lnx)^2-2xlnx+2x+CC为常数

∫[ln(lnx)/x]dx 的不定积分

原式=∫ln(lnx)d(lnx)令lnx=y,得:原式=∫lnydy=ylny-∫yd(lny)=ylny-∫dy=ylny-y+C=lnxln(lnx)-lnx+C

求(lnx-1)/x^2的不定积分

∫(lnx-1)/x²dx=-∫(lnx-1)d(1/x)=-[(lnx-1)/x-∫1/xd(lnx-1)]=-(lnx-1)/x+∫1/x²dx=-(lnx-1)/x-1/x+

求不定积分 arcsinx的不定积分 e^√x+1的不定积分 (x-1)lnx的不定积分

答:1.∫arcsinxdx可用分部积分原式=xarcsinx-∫x/√(1-x^2)dx=xarcsinx+√(1-x^2)+C2.∫e^(√x+1)dx换元,令√(x+1)=t,则x=t^2-1,

求f'(lnx)/x*dx的不定积分

f'(lnx)/x*dx=f'(lnx)dlnx=f(lnx)+cc为常数

求分子是lnx,分母是(x的平方+1)的3/2次方,这个函数的不定积分

以下过程我将会说英文,高中生应该具备理解英文的能力噢.∫lnx/(x²+1)^(3/2)dx=∫lnxd[∫dx/(x²+1)^(3/2)]=∫lnxd[x/√(x²+1

求(1-lnx)dx/(x-lnx)^2的不定积分

1-lnx=(x-lnx)-x(1-1/x)凑微分∫[(1-lnx)/(x-lnx)^2]dx=x/(x-lnx)+C再问:过程能不能详细点再答:(x-lnx)'=1-1/x,∫[(1-lnx)/(x

∫sin(lnx)dx的不定积分

∫sin(lnx)dx=xsin(lnx)-∫xdsin(lnx)=xsin(lnx)-∫x*cos(lnx)*1/xdx=xsin(lnx)-∫cos(lnx)dx=xsin(lnx)-xcos(l

不定积分x的平方x(1+lnx)dx=

你应该说的是∫(x^x)(1+lnx)dx=∫[e^(xlnx)](1+lnx)dx=∫[e^(xlnx)]d(xlnx)=e^(xlnx)+c=x^x+c

(2-lnx)/x^2 的不定积分

拆开然后利用分部积分∫(2-lnx)/x²dx=∫2/x²dx+∫lnxd(1/x)=-2/x+(lnx)/x-∫1/x²dx=-2/x+(lnx)/x+1/x+C

求(lnx-1)/(lnx)^2的不定积分,

∫(lnx-1)/ln²xdx=∫1/lnxdx-∫1/ln²xdx=x/lnx-∫xd(1/lnx)-∫1/ln²xdx=x/lnx-∫x*-1/ln²x*1

x*(lnx)^2的不定积分

用两次分部积分法就可以了,答案就是1/2*x^2*{(lnx)^2-lnx-1/2}+C再问:能不能给出详细解答,谢谢再答:我现在没空了啊,总之这个答案是对的

cos(lnx)的不定积分怎样计算?

∫cos(lnx)dx=xcos(lnx)+∫sin(lnx)dx=xcos(lnx)+xsin(lnx)-∫cos(lnx)dx∫cos(lnx)dx=1/2[xcos(lnx)+xsin(lnx)

lnx的三次方比上x平方的不定积分

设lnx=t,x=e^t,dx=e^tdtS(lnx)^3/x^2dx=St^3/e^(2t)*e^tdt=St^3e^(-t)dt=-St^3d[e^(-t)]=-[t^3*e^(-t)-Se^(-